

Intelligent Landing System (ILS)

Nikolas Trawny and the Europa Lander ILS/GNC/DDL team
Jet Propulsion Laboratory, California Institute of Technology
Outer Planets Assessment Group (OPAG) Technology Forum, 23. February 2018

How (We Plan) To Land on Europa

Europa Deorbit, Descent, and Landing High Fidelity Dynamics Simulation

Intelligent Landing System Capabilities

Measure **Altitude** from 8km down to 10m

Artist's Concept

Map Relative Localization

- Map Relative Localization baselined on Mars 2020
 - ILS leverages Mars 2020
 software, firmware,
 hardware, and
 simulation development
- Issued Request For Proposals for multi-phase competitive technology development for ILS camera
- Captive carry ILS field test planned for 2019

Helicopter and Rocket Field Test Campaign 2014

Mars 2020 Lander Vision System

Engineering Development Unit

Velocity Measurements

- Velocity measured using image-toimage visual feature tracking (visual odometry)
- Proof-of-concept demonstration on helicopter field test and laboratory wall
- Nov 2018 planned drop test with representative final descent trajectory

2014 Helicopter Field Test

Hazard Detection / Altimetry

- Enabled by dual-mode LIDAR
- Started 3-phase LIDAR technology development in Jan 2018
- Goal: minimize flight development risk prior to PDR
- 3 Partners
 - Sigma Space Corp.
 - MIT Lincoln Laboratory
 - NASA Goddard Spaceflight
 Center

3D maps of icy surfaces produced by photon counting LIDAR [J. Degnan, C. Field, "Moderate to high altitude, single photon sensitive, 3D imaging lidars," Proc. SPIE 9114]

Questions?

jpl.nasa.gov